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A Lagrangian interpolation method for three-point problems 
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Abstntet--Three-point problems, traditionally solved using graphical constructions, can be formulated as 
Lagrangian interpolation problems and solved numerically using standard methods. In addition to calculating 
strike and dip of a planar geologic feature, three-point interpolation gives " ' " elevatton of the feature at an arbttrary 
point with minimum effort. 

INTRODUCTION ELEVATION OF A DIPPING PLANE 

GRAPHICAL solution of three-point problems is typically 
taught as part of elementary structural geology (e.g. 
Billings 1972, Ragan 1985, Suppe 1985, Rowland 1986, 
Marshak & Mitra 1988), groundwater hydrology 
(Freeze & Cherry 1979) or engineering geology (Rahn 
1986). Three-point problems, however, can also be 
formulated as Lagrangian interpolation problems and 
solved using standard techniques for systems of linear 
equations. Calculating strike and dip is no more difficult 
using interpolation methods than using graphical 
methods, and calculating the elevation of a dipping 
plane at an arbitrary point becomes a straightforward 
task. Although three-point interpolation plays an im- 
portant role in finite element solutions of partial differ- 
ential equations, where linear shape functions can be 
used to interpolate values in triangular elements (e.g. 
Zienkiewicz 1977), the method does not appear to be 
widely known among geologists. 

The classic interpolation problem is to find Nth degree 
polynomial values that pass exactly through N + 1 
known points in a plane. Strike, dip and elevation of a 
geologic feature can be calculated through the anal- 
ogous procedure of finding values of a plane that passes 
exactly through three known points in space. The adjec- 
tive Lagrangian describes interpolation methods that 
express these explicitly in terms of the co-ordinates of 
known points (Hildebrand 1987), e.g. borehole or out- 
crop locations. 

This note presents Lagrangian interpolation methods 
for the solution of two geologically separate but math- 
ematically similar problems: calculation of the depth or 
elevation of a dipping plane at a given point, and 
calculation of strike and dip Of a dipping plane. The first 
problem arises frequently in drilling programs, when a 
geologist may need to order materials or estimate drill- 
ing times based upon previously-collected data. In both 
problems, the positive x-direction corresponds to east, 
the positive y-direction corresponds to north and the z- 
axis is positive upwards. 

Assume that x, y, z co-ordinates of a planar geologic 
feature are known at three points, perhaps from bore- 
holes or outcrops, and the goal is to calculate z at a 
fourth point for which only x and y are known. The 
general formula for a plane is 

z = ao + atx  + a,y. (1) 

Thus, the three known points and one unknown point 
can be represented by the system of four linear 
equations 

x2 Y2 

x3 Y3 

x4 Y4 - 

a} al = 
a2 
z4 

Z2 . (2) 

Equations (2) can be solved for ao, at,  a2 and z~ using any 
number of standard methods, including mathematical 
subroutine libraries, equation-solving programs or 
hand-held calculators with matrix algebra capabilities. 
An alternative that at first seems attractive is to solve the 
set of equations 

[,x, yl] {z t 1 X2 Y2 al = Z, 

1 x3 Y3 a2 z 

(3) 

for a0, a t and a2, and then substitute these values into 
equation (1) to calculate za. This approach should be 
avoided for two reasons. First, the Vandermonde coef- 
ficient matrix in equations (3) is commonly ill- 
conditioned, producing values of z4 that will be less 
accurate than simultaneous solution for ao, at, a2 and z4 
(Press et al. 1989, pp. 92-95). Second, if a computer or 
calculator with matrix capabilities is used, then it is no 
more difficult to solve a set of four equations than it is to 
solve a set of three equations. Therefore, one might as 
well solve directly for z4 if this is the desired quantity. 
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Fig. 1. Illustration of variables and co-ordinates used in the three- 
point interpolation problem. The strike line is defined as a line of equal 
elevation dz/dx = d#dy = 0, and the tangent of true dip is gradz in the 

strike line-dip line co-ordinate system. 

ent method, but one which does not involve interpola- 
tion, to calculate the magnitude of dip using the formula 

tan 6 = ]gradzl = / ( ~ z 1 2 +  (azl2, (8) 
"V~Ox} \Oy] 

which is equivalent to (7) in this note. Vacher's ex- 
pression for strike angle is also identical to (5), save for 
the 90* difference between north and x co-ordinate axes. 

The azimuth of the dip line is given by 90* _+ 0, where 
addition or subtraction of 0 is chosen in order to get 
6 < 0. If only strike and dip are to be calculated, then 
equations (3) may be used to calculate a0, al and a2, or 
dummy values for x4 and Y4 may be used in equations 
(2). 

STRIKE AND DIP OF A PLANE 

Calculation of strike and dip requires some additional 
work. The strike of a dipping layer is defined by the 
intersection of that layer with an imaginary horizontal 
plane, forming a line of equal elevation. Thus strike can 
be calculated by setting the total derivative of equation 
(1) equal to zero 

0y 
d (ao + alx + a2y) = at + a2 - -  = 0 (4) 
dx Ox 

and solving for Oy/Ox = -al[a 2, which is the tangent of 
the angle between the positive x-axis and the strike line. 
Taking the total derivative of equation (1) with respect 
to y will produce the same result. The strike angle (i.e. 
the angle measured clockwise from the positive y-axis to 
the strike line) is given by (Fig. 1) 

0 = 90 ° - arctan (-al/a2). (5) 

The tangent of the dip angle is calculated by taking the 
gradient of equation (1) 

= Oz ~ + a z .  
grad z 0x ~yY = al~ + a2~, (6) 

where ~ and $, are, respectively, unit vectors in the 
positive x- and y-directions. The direction of true dip will 
in all cases be perpendicular to strike, so equation (6) 
must be re-written to yield the gradient perpendicular to 
strike by rotating the x-y  orthogonal co-ordinate system 
to coincide with the orthogonal strike and dip lines. 
Therefore the expression for dip angle (i.e. the maxi- 
mum angle between an imaginary horizontal plane and 
the dipping plane) is 

6 = arctan [al sin (90 ° + 0) + a 2 cos (90 ° +_ O)]. (7) 

Inspection of (7) shows that the term containing al is the 
gradient along the strike line and that the term contain- 
ing a 2 is the gradient along the dip line. In theory, then, 
a 1 = 0 in order for the strike line to be a line of equal 
elevation. As will be shown in the example problem 
below, however, calculated values of a I are typically 
small, non-zero values. Vacher (1989) also uses a gradi- 

EXAMPLE PROBLEM 

To illustrate an application of the interpolation 
method, consider a plane passing through known (x,y,z) 
co-ordinates (7 ,6 , -8) ,  (12,0 , -10)  and ( 2 , - 5 , - 1 2 ) .  The 
goal is to calculate (a) elevation of the plane at x = 7 
y = 2, and (b) strike and dip of the plane. Substitution of 
the known values into equations (2) gives 

1 12 0 0 al = - 1 0  
1 2 - 5  a2 - 12 (9)  

l 7 2 - z4 0 

which is solved to yield, to two decimal places. 

ao - 10.28 ] 

al = 0.02 t (10) 
a 2 0.35 " 
z~ -9.41 

This example problem was solved twice, using both the 
computer program Mathematica (Wolfram 1988)and a 
Hewlett-Packard HP-15C calculator. From equation 
(5), the strike angle is given by 

0 = 90* - arctan (-0.02/0.35) = 93.27 ° (11) 

or, using the geologic convention that strike must range 
from 270* through 360* to 090", 273.27 °. This problem is 
systematically resolved by adding 180. if 90 ° <- 0 -< 180. 
and subtracting 180" if 180" -< 0 -< 270*. From equation 
(7) the dip angle is 

6 = arctan [0.02 sin (90 ° + 93.27 °) 
+ 0.35 cos (90 ° + 93.27°)] = -19.31" (12) 

along an azimuth of 90* + 93.27 ° = 183.27 °. The reader 
can verify these strike and dip values using traditional 
methods. Calculated apparent dip along the strike line, 
which must in theory equal zero, is in this case 

arctan [0.02 sin (90* + 93.27*)] = -0 .06  ° (13) 

which is negligible. 
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